SAFETY DATA SHEET DDP SPECIALTY ELECTRONIC MATERIALS US 9, LLC Product name: GREAT STUFF™ Gaps & Cracks Insulating Foam Sealant 12oz HC ES SASTW 12ct Issue Date: 04/17/2023 Print Date: 06/21/2023 DDP SPECIALTY ELECTRONIC MATERIALS US 9, LLC encourages and expects you to read and understand the entire (M)SDS, as there is important information throughout the document. We expect you to follow the precautions identified in this document unless your use conditions would necessitate other appropriate methods or actions. ### 1. IDENTIFICATION Product name: GREAT STUFF™ Gaps & Cracks Insulating Foam Sealant 12oz HC ES SASTW 12ct Recommended use of the chemical and restrictions on use Identified uses: Polyurethane foam. COMPANY IDENTIFICATION DDP SPECIALTY ELECTRONIC MATERIALS US 9, LLC 974 Centre Road Wilmington DE 19805 **UNITED STATES** **Customer Information Number:** 833-338-7668 SDSQuestion-NA@dupont.com **EMERGENCY TELEPHONE NUMBER** 24-Hour Emergency Contact: 1-800-424-9300 Local Emergency Contact: 800-424-9300 #### 2. HAZARDS IDENTIFICATION ### Hazard classification GHS classification in accordance with 29 CFR 1910.1200 Flammable aerosols - Category 2 Gases under pressure - Liquefied gas Acute toxicity - Category 4 - Inhalation Skin irritation - Category 2 Eye irritation - Category 2B Respiratory sensitisation - Category 1 Skin sensitisation - Category 1 Effects on or via lactation Specific target organ toxicity - single exposure - Category 3 Specific target organ toxicity - repeated exposure - Category 2 - Inhalation ### Label elements Hazard pictograms Signal word: DANGER! #### Hazards Flammable aerosol. Contains gas under pressure; may explode if heated. Causes skin and eve irritation. May cause an allergic skin reaction. Harmful if inhaled. May cause allergy or asthma symptoms or breathing difficulties if inhaled. May cause respiratory irritation. May cause harm to breast-fed children. May cause damage to organs (Respiratory Tract) through prolonged or repeated exposure if inhaled. ### **Precautionary statements** #### Prevention Obtain special instructions before use. Keep away from heat/ sparks/ open flames/ hot surfaces. No smoking. Do not spray on an open flame or other ignition source. Pressurized container: Do not pierce or burn, even after use. Do not breathe dust or mist. Avoid contact during pregnancy/ while nursing. Wash skin thoroughly after handling. Do not eat, drink or smoke when using this product. Use only outdoors or in a well-ventilated area. Contaminated work clothing must not be allowed out of the workplace. Wear protective gloves. In case of inadequate ventilation wear respiratory protection. #### Response IF ON SKIN: Wash with plenty of soap and water. IF INHALED: Remove person to fresh air and keep comfortable for breathing. Call a POISON CENTER/ doctor if you feel unwell. IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. IF exposed or concerned: Get medical advice/ attention. If skin irritation or rash occurs: Get medical advice/ attention. If eye irritation persists: Get medical advice/ attention. Take off contaminated clothing and wash before reuse. #### Storage Store in a well-ventilated place. Keep container tightly closed. Store locked up. Protect from sunlight. Do not expose to temperatures exceeding 50 °C/ 122 °F. #### Disposal Dispose of contents/ container to an approved waste disposal plant. #### Other hazards No data available # 3. COMPOSITION/INFORMATION ON INGREDIENTS | This product is a mixture. Component | CASRN | Concentration | |---|------------|---------------------| | | | | | Diphenylmethane Diisocyanate, isomers and homologues | 9016-87-9 | >= 10.0 - <= 30.0 % | | 4,4' -Methylenediphenyl diisocyanate | 101-68-8 | >= 10.0 - <= 30.0 % | | Polymethylenepolyphenylisocyanate, propoxylated glycerin polymer | 57029-46-6 | >= 10.0 - <= 30.0 % | | Polymethylenepolyphenyl polyisocyanate, polypropyleneglycol copolymer | 53862-89-8 | >= 10.0 - <= 30.0 % | | Isobutane | 75-28-5 | >= 7.0 - <= 13.0 % | | Paraffin waxes and Hydrocarbon waxes, chlorinated | 63449-39-8 | >= 5.0 - <= 10.0 % | | Tris(1-chloro-2-propyl) phosphate | 13674-84-5 | >= 5,0 - <= 10.0 % | | Methyl ether | 115-10-6 | >= 1.0 - <= 5.0 % | | Propane | 74-98-6 | >= 1.0 - <= 5.0 % | | Note | | | ### 4. FIRST AID MEASURES ### Description of first aid measures General advice: Note: CAS 101-68-8 is an MDI isomer that is part of CAS 9016-87-9. First Aid responders should pay attention to self-protection and use the recommended protective clothing (chemical resistant gloves, splash protection). If potential for exposure exists refer to Section 8 for specific personal protective equipment. Inhalation: Move person to fresh air. If not breathing, give artificial respiration; if by mouth to mouth use rescuer protection (pocket mask, etc). If breathing is difficult, oxygen should be administered by qualified personnel. Call a physician or transport to a medical facility. Skin contact: Remove material from skin immediately by washing with soap and plenty of water. Remove contaminated clothing and shoes while washing. Seek medical attention if irritation persists. Wash clothing before reuse. An MDI skin decontamination study demonstrated that cleaning very soon after exposure is important, and that a polyglycol-based skin cleanser or corn oil may be more effective than soap and water. Discard items which cannot be decontaminated, including leather articles such as shoes, belts and watchbands. Suitable emergency safety shower facility should be available in work area. **Eye contact:** Immediately flush eyes with water; remove contact lenses, if present, after the first 5 minutes, then continue flushing eyes for at least 15 minutes. Obtain medical attention without delay, preferably from an ophthalmologist. Suitable emergency eye wash facility should be available in work area. **Ingestion:** If swallowed, seek medical attention. Do not induce vomiting unless directed to do so by medical personnel. #### Most important symptoms and effects, both acute and delayed: Aside from the information found under Description of first aid measures (above) and Indication of immediate medical attention and special treatment needed (below), any additional important symptoms and effects are described in Section 11: Toxicology Information. Indication of any immediate medical attention and special treatment needed Notes to physician: Maintain adequate ventilation and oxygenation of the patient. May cause respiratory sensitization or asthma-like symptoms. Bronchodilators, expectorants and antitussives may be of help. Treat bronchospasm with inhaled beta2 agonist and oral or parenteral corticosteroids. Respiratory symptoms, including pulmonary edema, may be delayed. Persons receiving significant exposure should be observed 24-48 hours for signs of respiratory distress. Exposure may increase "myocardial irritability". Do not administer sympathomimetic drugs such as epinephrine unless absolutely necessary. If you are sensitized to diisocyanates, consult your physician regarding working with other respiratory irritants or sensitizers. Treatment of exposure should be directed at the control of symptoms and the clinical condition of the patient. Excessive exposure may aggravate preexisting asthma and other respiratory disorders (e.g. emphysema, bronchitis, reactive airways dysfunction syndrome). ### 5. FIREFIGHTING MEASURES **Suitable extinguishing media:** Water fog or fine spray. Dry chemical fire extinguishers. Carbon dioxide fire extinguishers. Foam. Alcohol resistant foams (ATC type) are preferred. General purpose synthetic foams (including AFFF) or protein foams may function, but will be less effective. **Unsuitable extinguishing media:** Do not use direct water stream. Straight or direct water streams may not be effective to extinguish fire. #### Special hazards arising from the substance or mixture Hazardous combustion products: During a fire, smoke may contain the original material in addition to combustion products of varying composition which may be toxic and/or irritating. Combustion products may include and are not limited to: Nitrogen oxides. Isocyanates. Hydrogen chloride. Carbon monoxide. Carbon dioxide. Hydrogen cyanide. **Unusual Fire and Explosion Hazards:** Contains flammable propellant. Aerosol cans exposed to fire can rupture and become flaming projectiles. Propellant release may result in a fireball. Vapors are heavier than air and may travel a long distance and accumulate in low lying areas. Ignition and/or flash back may occur. Dense smoke is produced when product burns. Advice for firefighters Fire Fighting Procedures: Keep people away. Isolate fire and deny unnecessary entry. Stay upwind. Keep out of low areas where gases (fumes) can accumulate. Water may not be effective in extinguishing fire. Do not use direct water stream. May spread fire. Fight fire from protected location or safe distance. Consider the use of unmanned hose holders or monitor nozzles. Eliminate ignition sources. Move container from fire area if this is possible without hazard. Use water spray to cool fire-exposed containers and fire-affected zone until fire is out. Special protective equipment for firefighters: Wear positive-pressure self-contained breathing apparatus (SCBA) and protective fire fighting clothing (includes fire fighting helmet, coat, trousers, boots, and gloves). Avoid contact with this material during fire fighting operations. If contact is likely, change to full chemical resistant fire fighting clothing with self-contained breathing apparatus. If this is not available, wear full chemical resistant clothing with self-contained breathing apparatus and fight fire from a remote location. For protective equipment in post-fire or non-fire clean-up situations, refer to the relevant sections.
6. ACCIDENTAL RELEASE MEASURES Personal precautions, protective equipment and emergency procedures: Evacuate area. Only trained and properly protected personnel must be involved in clean-up operations. Keep personnel out of low areas. Keep personnel out of confined or poorly ventilated areas. Keep upwind of spill. Ventilate area of leak or spill. No smoking in area. Check area with combustible gas detector before reentering area. Ground and bond all containers and handling equipment. Confined space entry procedures must be followed before entering the area. Eliminate all sources of ignition in vicinity of spill or released vapor to avoid fire or explosion. Vapor explosion hazard. Keep out of sewers. See Section 10 for more specific information. Use appropriate safety equipment. For additional information, refer to Section 8, Exposure Controls and Personal Protection. Environmental precautions: Prevent from entering into soil, ditches, sewers, waterways and/or groundwater. See Section 12, Ecological Information. Methods and materials for containment and cleaning up: Contain spilled material if possible. Ground and bond all containers and handling equipment. Isolate area until gas has dispersed. Use non-sparking tools in cleanup operations. Eliminate all sources of ignition in vicinity of spill or released vapor to avoid fire or explosion. Check area with combustible gas detector before reentering area. Ground and bond all containers and handling equipment. Collect in suitable and properly labeled containers. Absorb with materials such as: Clay. Dirt. Milsorb®. Sand. Sawdust. Vermiculite. See Section 10 for more specific information. See Section 13, Disposal Considerations, for additional information. ### 7. HANDLING AND STORAGE Precautions for safe handling: Keep away from heat, sparks and flame. No smoking, open flames or sources of ignition in handling and storage area. Avoid contact with eyes, skin, and clothing. Avoid prolonged or repeated contact with skin. Avoid breathing vapor. Never use air pressure for transferring product. Wash thoroughly after handling. Keep container closed. Use only with adequate ventilation. Keep out of reach of children. Vapors are heavier than air and may travel a long distance and accumulate in low lying areas. Ignition and/or flash back may occur. Contents under pressure. Do not puncture or incinerate container. Containers, even those that have been emptied, can contain vapors. Do not cut, drill, grind, weld, or perform similar operations on or near empty containers. Do not enter confined spaces unless adequately ventilated. Use of non-sparking or explosion-proof equipment may be necessary, depending upon the type of operation. See Section 8, EXPOSURE CONTROLS AND PERSONAL PROTECTION. **Conditions for safe storage**: Minimize sources of ignition, such as static build-up, heat, spark or flame. Store in a dry place. See Section 10 for more specific information. Storage stability Storage temperature: Storage Period: 25 °C (77 °F) 18 Month # 8. EXPOSURE CONTROLS/PERSONAL PROTECTION #### Control parameters If exposure limits exist, they are listed below. If no exposure limits are displayed, then no values are applicable. | Component | Regulation | Type of listing | Value | | |-------------------------|--|---|--------------------------|--| | 4,4' -Methylenediphenyl | DUPONT AEL | AEL * Vapour | 2.5 Parts per billion | | | diisocyanate | | , | • | | | | DUPONT AEL | AEL * Vapour | 20 Parts per billion | | | | DUPONT AEL | AEL * particulate | 0.025 mg/m3 | | | | ACGIH | TWA | 0.005 ppm | | | | Further information: resp se | Further information: resp sens: Respiratory sensitization | | | | | OSHA Z-1 | C | 0.2 mg/m3 0.02 ppm | | | | Further information: (b): The value in mg/m3 is approximate.; Ceiling limit is to be determined from breathing-zone air samples. | | | | | | OSHA P0 | C | 0.2 mg/m3 0.02 ppm | | | Isobutane | ACGIH | STEL | 1,000 ppm | | | | Further information: EX: Explosion hazard: the substance is a flammable asphyxiant or excursions above the TLV® could approach 10% of the lower explosive limit.; CNS impair: Central Nervous System impairment | | | | | Methyl ether | US WEEL | TWA | 1,000 ppm | | | Propane | ACGIH | | See Further information | | | | Further information: See Appendix F: Minimal Oxygen Content; EX: Explosion hazard: the substance is a flammable asphyxiant or excursions above the TLV® could approach 10% of the lower explosive limit.; asphyxia: Asphyxia; D: Simple asphyxiant; see discussion covering Minimal Oxygen Content found in the 'Definitions and Notations' section following the NIC tables | | | | | | OSHA Z-1 | TWA | 1,800 mg/m3 1,000
ppm | | | · | Further information: (b): The | value in mg/m3 is approxim | | | | | CAL PEL | PEL | 1,800 mg/m3 1,000 | | | | Eurhaninfamatian /5\ A = | | ppm | | | | Further information: (h): A number of gases and vapors, when present in high concentrations, act primarily as asphyxiants without other adverse effects. A concentration limit is not included for each material because the limiting factor is the | | | | Product name: GREAT STUFF™ Gaps & Cracks Insulating Foam Sealant 12oz HC ES SASTW 12ct | 1 | available oxygen. (Several | of these materials present fire | e or explosion hazards.) | |-----|----------------------------|---------------------------------|--------------------------| | | NIOSH REL | TWA | | | | | | ppm | | A10 | | | | This material contains a simple asphyxiant which may displace oxygen. Insure adequate ventilation to prevent an oxygen deficient atmosphere. The minimum requirement of 19.5% oxygen at sea level (148 torr O2, dry air) provides an adequate amount of oxygen for most work assignments. **Exposure controls** Engineering measures: Use only with adequate ventilation. Local exhaust ventilation may be necessary for some operations. Provide general and/or local exhaust ventilation to control airborne levels below the exposure guidelines. Exhaust systems should be designed to move the air away from the source of vapor/aerosol generation and people working at this point. The odor and irritancy of this material are inadequate to warn of excessive exposure. Lethal concentrations may exist in areas with poor ventilation. Individual protection measures Eye/face protection: Use safety glasses (with side shields). Skin protection Hand protection: Use gloves chemically resistant to this material. Examples of preferred glove barrier materials include: Butyl rubber. Chlorinated polyethylene. Polyethylene. Ethyl vinyl alcohol laminate ("EVAL"). Examples of acceptable glove barrier materials include: Neoprene. Nitrile/butadiene rubber ("nitrile" or "NBR"). Viton. Polyvinyl chloride ("PVC" or "vinyl"). NOTICE: The selection of a specific glove for a particular application and duration of use in a workplace should also take into account all relevant workplace factors such as, but not limited to: Other chemicals which may be handled, physical requirements (cut/puncture protection, dexterity, thermal protection), potential body reactions to glove materials, as well as the instructions/specifications provided by the glove supplier. Other protection: Use protective clothing chemically resistant to this material. Selection of specific items such as face shield, boots, apron, or full body suit will depend on the task. Respiratory protection: Atmospheric levels should be maintained below the exposure guideline. When atmospheric levels may exceed the exposure guideline, use an approved air-purifying respirator equipped with an organic vapor sorbent and a particle filter. For situations where the atmospheric levels may exceed the level for which an air-purifying respirator is effective, use a positive-pressure air-supplying respirator (air line or self-contained breathing apparatus). For emergency response or for situations where the atmospheric level is unknown, use an approved positive-pressure selfcontained breathing apparatus or positive-pressure air line with auxiliary self-contained air supply. In confined or poorly ventilated areas, use an approved self-contained breathing apparatus or positive pressure air line with auxiliary self-contained air supply. The following should be effective types of air-purifying respirators: Organic vapor cartridge with a particulate pre-filter. # 9. PHYSICAL AND CHEMICAL PROPERTIES **Appearance** Physical state Foam Color Yellow Product name: GREAT STUFF™ Gaps & Cracks Insulating Foam Sealant 12oz HC ES SASTW 12ct Odor Mild **Odor Threshold** No test data available рΗ Not applicable Melting point/range No test data available Freezing point No test data available Boiling point (760 mmHg) Not applicable Flash point closed cup -104 °C (-155 °F) Closed Cup **Evaporation Rate (Butyl Acetate** No test data available = 1) Flammability (solid, gas) No data available Lower explosion limit No test data available Upper explosion limit No test data available Vapor Pressure 1,151 hPa at 55 °C (131 °F) Not reported Container is under pressure. Relative Vapor Density (air = 1) No test data available Relative Density (water = 1) 1.06 Estimated. Water solubility insoluble Partition coefficient: n-No data available octanol/water Auto-ignition temperature No test data available Decomposition temperature No test data available Kinematic Viscosity Not applicable Explosive properties Not explosive Oxidizing properties No Molecular weight No test data available NOTE: The physical data presented above are typical values and should not be construed as a specification. ### 10. STABILITY AND
REACTIVITY Reactivity: No data available Chemical stability: Stable under recommended storage conditions. See Storage, Section 7. Unstable at elevated temperatures. Possibility of hazardous reactions: Can occur. Exposure to elevated temperatures can cause product to decompose and generate gas. This can cause pressure build-up and/or rupturing of closed containers. Acids. Conditions to avoid: Avoid temperatures above 50 °C Elevated temperatures can cause container to vent and/or rupture. Exposure to elevated temperatures can cause product to decompose. Incompatible materials: Avoid contact with: Acids. Alcohols. Amines. Ammonia. Bases. Metal compounds. Strong oxidizers. Products based on diisocyanates like TDI and MDI react with many materials to release heat. The reaction rate increases with temperature as well as with increased contact; these reactions can become violent. Contact is increased by stirring or if the other material acts as a solvent. Products based on diisocyanates such as TDI and MDI are not soluble in water and will sink to the bottom, but react slowly at the interface. The reaction forms carbon dioxide gas and a layer of solid polyurea. Reaction with water will generate carbon dioxide and heat. Hazardous decomposition products: Decomposition products depend upon temperature, air supply and the presence of other materials. Toxic gases are released during decomposition. ### 11. TOXICOLOGICAL INFORMATION Toxicological information appears in this section when such data is available. #### **Acute toxicity** #### Acute oral toxicity Product test data not available. Refer to component data. #### Acute dermal toxicity Product test data not available. Refer to component data. ### Acute inhalation toxicity Product test data not available. Refer to component data. #### Skin corrosion/irritation Prolonged contact may cause moderate skin irritation with local redness. Material may stick to skin causing irritation upon removal. May stain skin. #### Serious eye damage/eye irritation May cause moderate eye irritation. May cause slight temporary corneal injury. ### Sensitization Product test data not available. Refer to component data. ### Specific Target Organ Systemic Toxicity (Single Exposure) Product test data not available. Refer to component data. #### Specific Target Organ Systemic Toxicity (Repeated Exposure) Product test data not available. Refer to component data. #### Carcinogenicity Lung tumors have been observed in laboratory animals exposed to respirable aerosol droplets of MDI/Polymeric MDI (6 mg/m3) for their lifetime. Tumors occurred concurrently with respiratory irritation and lung injury. Current exposure guidelines are expected to protect against these effects reported for MDI. Page 9 of 26 #### Teratogenicity Product test data not available. Refer to component data. #### Reproductive toxicity Product test data not available. Refer to component data. #### Mutagenicity Product test data not available. Refer to component data. #### Aspiration Hazard Product test data not available. Refer to component data. #### COMPONENTS INFLUENCING TOXICOLOGY: #### Diphenylmethane Diisocyanate, isomers and homologues #### Acute oral toxicity Typical for this family of materials. LD50, Rat, > 10,000 mg/kg #### Acute dermal toxicity Typical for this family of materials. LD50, Rabbit, > 9,400 mg/kg #### Acute inhalation toxicity LC50, Rat, 4 Hour, dust/mist, 0.49 mg/l For similar material(s): 4,4'-Methylenediphenyl diisocyanate (CAS 101-68-8), LC50, Rat, 1 Hour, Aerosol, 2.24 mg/l For similar material(s): 2,4'-Diphenylmethane diisocyanate (CAS 5873-54-1). LC50, Rat, 4 Hour, Aerosol, 0.387 mg/l #### Sensitization Skin contact may cause an allergic skin reaction. Animal studies have shown that skin contact with isocyanates may play a role in respiratory sensitization. May cause allergic respiratory reaction. MDI concentrations below the exposure guidelines may cause allergic respiratory reactions in individuals already sensitized. Asthma-like symptoms may include coughing, difficult breathing and a feeling of tightness in the chest. Occasionally, breathing difficulties may be life threatening. ### Specific Target Organ Systemic Toxicity (Single Exposure) May cause respiratory irritation. Route of Exposure: Inhalation Target Organs: Respiratory Tract #### Specific Target Organ Systemic Toxicity (Repeated Exposure) Tissue injury in the upper respiratory tract and lungs has been observed in laboratory animals after repeated excessive exposures to MDI/polymeric MDI aerosols. #### **Teratogenicity** In laboratory animals, MDI/polymeric MDI did not cause birth defects; other fetal effects occurred only at high doses which were toxic to the mother. ### Reproductive toxicity No relevant data found. #### Mutagenicity Genetic toxicity data on MDI are inconclusive. MDI was weakly positive in some in vitro studies; other in vitro studies were negative. Animal mutagenicity studies were predominantly negative. #### **Aspiration Hazard** Based on physical properties, not likely to be an aspiration hazard. #### 4,4' -Methylenediphenyl diisocyanate #### Acute oral toxicity LD50, Rat, > 2,000 mg/kg No deaths occurred at this concentration. #### Acute dermal toxicity LD50, Rabbit, > 9,400 mg/kg ### Acute inhalation toxicity LC50, Rat, 1 Hour, dust/mist, 2.24 mg/l #### Sensitization Skin contact may cause an allergic skin reaction. Animal studies have shown that skin contact with isocyanates may play a role in respiratory sensitization. ### May cause allergic respiratory reaction. MDI concentrations below the exposure guidelines may cause allergic respiratory reactions in individuals already sensitized. Asthma-like symptoms may include coughing, difficult breathing and a feeling of tightness in the chest. Occasionally, breathing difficulties may be life threatening. ### Specific Target Organ Systemic Toxicity (Single Exposure) May cause respiratory irritation. Route of Exposure: Inhalation Target Organs: Respiratory Tract ### Specific Target Organ Systemic Toxicity (Repeated Exposure) Tissue injury in the upper respiratory tract and lungs has been observed in laboratory animals after repeated excessive exposures to MDI/polymeric MDI aerosols. ### Teratogenicity Has been toxic to the fetus in laboratory animals at doses toxic to the mother. Did not cause birth defects in laboratory animals. #### Reproductive toxicity No relevant data found. ### Mutagenicity Genetic toxicity data on MDI are inconclusive. MDI was weakly positive in some in vitro studies; other in vitro studies were negative. Animal mutagenicity studies were predominantly negative. Page 11 of 26 Sealant 12oz HC ES SASTW 12ct #### **Aspiration Hazard** Based on physical properties, not likely to be an aspiration hazard. ### Polymethylenepolyphenylisocyanate, propoxylated glycerin polymer ### Acute oral toxicity Typical for this family of materials. LD50, Rat, > 2,000 mg/kg Estimated. No deaths occurred at this concentration. #### Acute dermal toxicity Typical for this family of materials. LD50, Rabbit, > 2,000 mg/kg Estimated. #### Acute inhalation toxicity The LC50 has not been determined. #### Sensitization For this family of materials, sensitization studies done in guinea pigs have been negative. #### For respiratory sensitization: No relevant data found. ### Specific Target Organ Systemic Toxicity (Single Exposure) Evaluation of available data suggests that this material is not an STOT-SE toxicant. ### Specific Target Organ Systemic Toxicity (Repeated Exposure) No relevant data found. #### **Teratogenicity** No relevant data found. #### Reproductive toxicity No relevant data found. ### Mutagenicity One material tested in this family was negative in the Ames test. #### **Aspiration Hazard** Based on physical properties, not likely to be an aspiration hazard. #### Polymethylenepolyphenyl polyisocyanate, polypropyleneglycol copolymer ### Acute oral toxicity Typical for this family of materials. Observations in animals include: Gastrointestinal irritation, LD50, Rat, > 2,000 mg/kg. No deaths occurred at this concentration. #### Acute dermal toxicity Typical for this family of materials. LD50, Rabbit, > 9,400 mg/kg ### Acute inhalation toxicity At room temperature, vapors are minimal due to low volatility. However, certain operations may generate vapor or mist concentrations sufficient to cause respiratory irritation and other adverse effects. Such operations include those in which the material is heated, sprayed or otherwise mechanically dispersed such as drumming, venting or pumping. Excessive exposure may cause irritation to upper respiratory tract (nose and throat) and lungs. May cause pulmonary edema (fluid in the lungs.) Effects may be delayed. Decreased lung function has been associated with overexposure to isocyanates. The LC50 has not been determined. #### Sensitization Skin contact may cause an allergic skin reaction. Animal studies have shown that skin contact with isocyanates may play a role in respiratory sensitization. May cause allergic respiratory reaction. MDI concentrations below the exposure guidelines may cause allergic respiratory reactions in individuals already sensitized. Asthma-like symptoms may include coughing, difficult breathing and a feeling of tightness in the chest. Occasionally, breathing difficulties may be life threatening. ### Specific Target Organ Systemic Toxicity (Repeated Exposure) Tissue injury in the upper respiratory tract and lungs has been observed in laboratory animals after repeated excessive exposures to MDI/polymeric MDI aerosols. Teratogenicity In laboratory animals, MDI/polymeric MDI did not cause birth defects; other fetal effects occurred only at high doses which were toxic to the mother. #### Reproductive toxicity No specific, relevant data available for assessment. ### Mutagenicity Genetic toxicity data on MDI are inconclusive. MDI was weakly positive in some in vitro studies; other in vitro studies were negative.
Animal mutagenicity studies were predominantly negative. #### **Aspiration Hazard** Based on physical properties, not likely to be an aspiration hazard. #### Isobutane ### Acute oral toxicity Single dose oral LD50 has not been determined. ### Acute dermal toxicity The dermal LD50 has not been determined. #### Acute inhalation toxicity LC50, Mouse, 4 Hour, gas, 260200 ppm #### Sensitization No relevant data found. For respiratory sensitization: No relevant data found. ## Specific Target Organ Systemic Toxicity (Single Exposure) May cause drowsiness or dizziness. #### Specific Target Organ Systemic Toxicity (Repeated Exposure) Based on available data, repeated exposures are not anticipated to cause significant adverse effects. ### Teratogenicity No relevant data found. #### Reproductive toxicity No relevant data found. #### Mutagenicity In vitro genetic toxicity studies were negative. #### **Aspiration Hazard** Aspiration into the lungs may occur during ingestion or vomiting, causing lung damage or even death due to chemical pneumonia. #### Paraffin waxes and Hydrocarbon waxes, chlorinated #### Acute oral toxicity Based on information for a similar material: LD50, Rat, > 10,000 mg/kg #### Acute dermal toxicity The dermal LD50 has not been determined. LD50, Rat, > 2,000 mg/kg Estimated. #### Acute inhalation toxicity The LC50 has not been determined. #### Sensitization For skin sensitization: Did not cause allergic skin reactions when tested in humans. #### For respiratory sensitization: No relevant information found. #### Specific Target Organ Systemic Toxicity (Single Exposure) Evaluation of available data suggests that this material is not an STOT-SE toxicant. ### Specific Target Organ Systemic Toxicity (Repeated Exposure) For similar material(s): In animals, effects have been reported on the following organs: Liver. Kidney. #### Teratogenicity For similar material(s): Has caused birth defects in laboratory animals only at doses toxic to the mother. #### Reproductive toxicity May cause harm to breastfed babies. #### Mutagenicity For similar material(s): This material was not genotoxic in various mutagenicity and clastogenicity tests. #### **Aspiration Hazard** Based on physical properties, not likely to be an aspiration hazard. ### Tris(1-chloro-2-propyl) phosphate #### Acute oral toxicity LD50, Rat, male and female, >1,000 mg/kg #### Acute dermal toxicity LD50, Rabbit, > 5,000 mg/kg #### Acute inhalation toxicity No deaths occurred at this concentration. LC50, Rat, 4 Hour, dust/mist, > 7 mg/l #### Sensitization Did not cause allergic skin reactions when tested in humans. Did not cause allergic skin reactions when tested in guinea pigs. ### For respiratory sensitization: No data available. ### Specific Target Organ Systemic Toxicity (Single Exposure) Evaluation of available data suggests that this material is not an STOT-SE toxicant. ### Specific Target Organ Systemic Toxicity (Repeated Exposure) Based on available data, repeated exposures are not anticipated to cause significant adverse effects. ### Teratogenicity Did not cause birth defects or any other fetal effects in laboratory animals. #### Reproductive toxicity No relevant data found. #### Mutagenicity In vitro genetic toxicity studies were negative. Animal genetic toxicity studies were negative. #### **Aspiration Hazard** Based on available information, aspiration hazard could not be determined. #### Methyl ether #### Acute oral toxicity Single dose oral LD50 has not been determined. #### Acute dermal toxicity The dermal LD50 has not been determined. #### Acute inhalation toxicity LC50, Rat, 4 Hour, gas, 164000 ppm # Sealant 12oz HC ES SASTW 12ct #### Sensitization No relevant information found. For respiratory sensitization: No relevant information found. ### Specific Target Organ Systemic Toxicity (Single Exposure) Available data are inadequate to determine single exposure specific target organ toxicity. ### Specific Target Organ Systemic Toxicity (Repeated Exposure) In animals, effects have been reported on the following organs: Kidney. Liver. #### Teratogenicity Has been toxic to the fetus in laboratory animals at doses toxic to the mother. #### Reproductive toxicity No relevant data found. #### Mutagenicity In vitro genetic toxicity studies were negative. Animal genetic toxicity studies were negative. #### **Aspiration Hazard** Based on physical properties, not likely to be an aspiration hazard. #### Propane #### Acute oral toxicity Single dose oral LD50 has not been determined. #### Acute dermal toxicity The dermal LD50 has not been determined. ### Acute inhalation toxicity LC50, Rat, male and female, 4 Hour, vapour, > 425000 ppm #### Sensitization For skin sensitization: No relevant data found. For respiratory sensitization: No relevant data found. ### Specific Target Organ Systemic Toxicity (Single Exposure) Available data are inadequate to determine single exposure specific target organ toxicity. #### Specific Target Organ Systemic Toxicity (Repeated Exposure) Based on available data, repeated exposures are not anticipated to cause additional significant adverse effects. ### Teratogenicity Screening studies suggest that this material does not affect fetal development. Reproductive toxicity In animal studies, did not interfere with reproduction. In animal studies, did not interfere with fertility. Mutagenicity In vitro genetic toxicity studies were negative. **Aspiration Hazard** Based on physical properties, not likely to be an aspiration hazard. Carcinogenicity Component List Classification Paraffin waxes and IARC Group 2B: Possibly carcinogenic to Hydrocarbon waxes, chlorinated # 12. ECOLOGICAL INFORMATION Ecotoxicological information appears in this section when such data is available. #### Toxicity ### Diphenylmethane Diisocyanate, isomers and homologues #### Acute toxicity to fish The measured ecotoxicity is that of the hydrolyzed product, generally under conditions maximizing production of soluble species. Material is practically non-toxic to aquatic organisms on an acute basis (LC50/EC50/EL50/LL50 >100 mg/L in the most sensitive species tested). Based on information for a similar material: LC50, Danio rerio (zebra fish), static test, 96 Hour, > 1,000 mg/l, OECD Test Guideline 203 or Equivalent #### Acute toxicity to aquatic invertebrates Based on information for a similar material: EC50, Daphnia magna (Water flea), static test, 24 Hour, > 1,000 mg/l, OECD Test Guideline 202 or Equivalent ### Acute toxicity to algae/aquatic plants Based on information for a similar material: NOEC, Desmodesmus subspicatus (green algae), static test, 72 Hour, Growth rate inhibition, 1,640 mg/l, OECD Test Guideline 201 or Equivalent ### Toxicity to bacteria Based on information for a similar material: EC50, activated sludge, static test, 3 Hour, Respiration rates., > 100 mg/l Toxicity to soil-dwelling organisms EC50, Eisenia fetida (earthworms), Based on information for a similar material:, 14 d, > 1,000 mg/kg ### Toxicity to terrestrial plants EC50, Avena sativa (oats), Growth inhibition, 1,000 mg/l EC50, Lactuca sativa (lettuce), Growth inhibition, 1,000 mg/l ### 4,4' -Methylenediphenyl diisocyanate #### Acute toxicity to fish The measured ecotoxicity is that of the hydrolyzed product, generally under conditions maximizing production of soluble species. Material is practically non-toxic to aquatic organisms on an acute basis (LC50/EC50/EL50/LL50 >100 mg/L in the most sensitive species tested). Based on information for a similar material: LC50, Danio rerio (zebra fish), static test, 96 Hour, > 1,000 mg/l, OECD Test Guideline 203 or Equivalent #### Acute toxicity to aquatic invertebrates Based on information for a similar material: EC50, Daphnia magna (Water flea), static test, 24 Hour, > 1,000 mg/l, OECD Test Guideline 202 or Equivalent #### Acute toxicity to algae/aquatic plants Based on information for a similar material: NOEC, Desmodesmus subspicatus (green algae), static test, 72 Hour, Growth rate inhibition, 1,640 mg/l, OECD Test Guideline 201 or Equivalent #### Toxicity to bacteria Based on information for a similar material: EC50, activated sludge, static test, 3 Hour, Respiration rates., > 100 mg/l #### Toxicity to soil-dwelling organisms EC50, Eisenia fetida (earthworms), Based on information for a similar material:, 14 d, > 1,000 mg/kg ### Toxicity to terrestrial plants EC50, Avena sativa (oats), Growth inhibition, 1,000 mg/l EC50, Lactuca sativa (lettuce), Growth inhibition, 1,000 mg/l ### Polymethylenepolyphenylisocyanate, propoxylated glycerin polymer ### Acute toxicity to fish For this family of materials: Material is practically non-toxic to aquatic organisms on an acute basis (LC50/EC50/EL50/LL50 >100 mg/L in the most sensitive species tested). ### Polymethylenepolyphenyl polyisocyanate, polypropyleneglycol copolymer ### Acute toxicity to fish Not expected to be acutely toxic to aquatic organisms. ### <u>Isobutane</u> #### Acute toxicity to fish No relevant data found. #### Paraffin waxes and Hydrocarbon waxes, chlorinated ### Acute toxicity to fish Material is highly toxic to aquatic organisms on an acute basis (LC50/EC50 between 0.1 and 1 mg/L in the most sensitive species tested). Product name: GREAT STUFF™ Gaps & Cracks Insulating Foam Sealant 12oz HC ES SASTW 12ct LC50, Oncorhynchus mykiss (rainbow trout), 96 Hour, > 0.1 mg/l #### Chronic toxicity to fish Based on data from similar materials NOEC, Oncorhynchus mykiss (rainbow trout), 60 d, 4.5 mg/l #### Tris(1-chloro-2-propyl) phosphate ### Acute toxicity to fish Material is slightly toxic to aquatic organisms on an acute basis (LC50/EC50 between 10 and 100 mg/L in the most sensitive species tested). Issue Date: 04/17/2023 LC50, Lepomis macrochirus (Bluegill sunfish), static test, 96 Hour, 84 mg/l, OECD Test Guideline 203 or Equivalent #### Acute toxicity to aquatic invertebrates EC50, Daphnia magna (Water flea), 48 Hour, 131 mg/l #### Acute toxicity to algae/aquatic plants ErC50,
Pseudokirchneriella subcapitata (green algae), static test, 96 Hour, Growth rate inhibition, 82 mg/l, OECD Test Guideline 201 or Equivalent ### Toxicity to bacteria EC50, activated sludge, Respiration inhibition, 3 Hour, 784 mg/l, OECD 209 Test #### Chronic toxicity to aquatic invertebrates NOEC, Daphnia magna (Water flea), semi-static test, 21 d, number of offspring, 32 mg/l #### Methyl ether ### Acute toxicity to fish Material is practically non-toxic to aquatic organisms on an acute basis (LC50/EC50/EL50/LL50 > 100 mg/L in the most sensitive species tested). LC50, Poecilia reticulata (guppy), semi-static test, 96 Hour, > 4,000 mg/l ### Acute toxicity to aquatic invertebrates LC50, Daphnia magna (Water flea), 48 Hour, > 4,000 mg/l, OECD Test Guideline 202 or Equivalent #### Propane ### Acute toxicity to fish No relevant data found. #### Persistence and degradability # Diphenylmethane Diisocyanate, isomers and homologues **Biodegradability:** In the aquatic and terrestrial environment, material reacts with water forming predominantly insoluble polyureas which appear to be stable. In the atmospheric environment, material is expected to have a short tropospheric half-life, based on calculations and by analogy with related disocyanates. 10-day Window: Not applicable Biodegradation: 0 % Exposure time: 28 d Method: OECD Test Guideline 302C or Equivalent #### 4,4' -Methylenediphenyl diisocyanate Page 19 of 26 Sealant 12oz HC ES SASTW 12ct Biodegradability: In the aquatic and terrestrial environment, material reacts with water forming predominantly insoluble polyureas which appear to be stable. In the atmospheric environment, material is expected to have a short tropospheric half-life, based on calculations and by analogy with related diisocyanates. Issue Date: 04/17/2023 10-day Window: Not applicable Biodegradation: 0 % Exposure time: 28 d Method: OECD Test Guideline 302C or Equivalent ### Polymethylenepolyphenylisocyanate, propoxylated glycerin polymer Biodegradability: For this family of materials: Material is readily biodegradable. Passes OECD test(s) for ready biodegradability. #### Polymethylenepolyphenyl polyisocyanate, polypropyleneglycol copolymer Biodegradability: Expected to degrade slowly in the environment. #### Isobutane Biodegradability: Biodegradation may occur under aerobic conditions (in the presence of oxygen). Theoretical Oxygen Demand: 3.58 mg/mg Photodegradation Test Type: Half-life (indirect photolysis) Sensitization: OH radicals Atmospheric half-life: 4.4 d Method: Estimated. #### Paraffin waxes and Hydrocarbon waxes, chlorinated Biodegradability: Expected to degrade slowly in the environment. For similar material(s): Biodegradation: 5 % Exposure time: 28 d Method: OECD Test Guideline 301D Theoretical Oxygen Demand: 2,89 mg/mg ### Tris(1-chloro-2-propyl) phosphate Biodegradability: Material is expected to biodegrade very slowly (in the environment). Fails to pass OECD/EEC tests for ready biodegradability. Material is ultimately biodegradable (reaches > 70% mineralization in OECD test(s) for inherent biodegradability). 10-day Window: Fail Biodegradation: 14 % Exposure time: 28 d Method: OECD Test Guideline 301E or Equivalent 10-day Window: Not applicable Biodegradation: 95 % Exposure time: 64 d Method: OECD Test Guideline 302A or Equivalent Theoretical Oxygen Demand: 1.17 mg/mg **Photodegradation** Page 20 of 26 Product name: GREAT STUFF™ Gaps & Cracks Insulating Foam Sealant 12oz HC ES SASTW 12ct Test Type: Half-life (indirect photolysis) Sensitization: OH radicals Atmospheric half-life: 0.24 d Method: Estimated. #### Methyl ether Biodegradability: Material is expected to biodegrade very slowly (in the environment). Fails Issue Date: 04/17/2023 to pass OECD/EEC tests for ready biodegradability. 10-day Window: Fail Blodegradation: 5 % Exposure time: 28 d Method: OECD Test Guideline 301A or Equivalent Theoretical Oxygen Demand: 2.08 mg/mg Photodegradation Test Type: Half-life (indirect photolysis) Sensitization: OH radicals Atmospheric half-life: 6.4 d Method: Estimated. #### **Propane** Biodegradability: No relevant data found. Theoretical Oxygen Demand: 3.64 mg/mg Photodegradation Test Type: Half-life (indirect photolysis) Sensitization: OH radicals Atmospheric half-life: 8.4 d Method: Estimated. #### Bioaccumulative potential ### Diphenylmethane Diisocyanate, isomers and homologues **Bioaccumulation:** Bioconcentration potential is low (BCF < 100 or Log Pow < 3). Reacts with water. In the aquatic and terrestrial environment, movement is expected to be limited by its reaction with water forming predominantly insoluble polyureas. Bioconcentration factor (BCF): 92 Cyprinus carpio (Carp) 28 d ### 4,4' -Methylenediphenyl diisocyanate **Bioaccumulation:** Bioconcentration potential is low (BCF < 100 or Log Pow < 3). Reacts with water. In the aquatic and terrestrial environment, movement is expected to be limited by its reaction with water forming predominantly insoluble polyureas. Bioconcentration factor (BCF): 92 Cyprinus carpio (Carp) 28 d # Polymethylenepolyphenylisocyanate, propoxylated glycerin polymer Bioaccumulation: No relevant data found. #### Polymethylenepolyphenyl polyisocyanate, polypropyleneglycol copolymer **Bioaccumulation:** In the aquatic and terrestrial environment, movement is expected to be limited by its reaction with water forming predominantly insoluble polyureas. Page 21 of 26 Product name: GREAT STUFF™ Gaps & Cracks Insulating Foam Sealant 12oz HC ES SASTW 12ct #### Isobutane Bioaccumulation: Bioconcentration potential is low (BCF < 100 or Log Pow < 3). Partition coefficient: n-octanol/water(log Pow): 2.76 Measured #### Paraffin waxes and Hydrocarbon waxes, chlorinated Bioaccumulation: Bioconcentration potential is low (BCF less than 100 or log Pow greater than 7). Partition coefficient: n-octanol/water(log Pow): 7.4 Estimated. #### Tris(1-chloro-2-propyl) phosphate Bioaccumulation: Bioconcentration potential is low (BCF < 100 or Log Pow < 3). Partition coefficient: n-octanol/water(log Pow): 2.59 Measured Bioconcentration factor (BCF): 0.8 - 4.6 Cyprinus carpio (Carp) 42 d Measured #### Methyl ether Bioaccumulation: Bioconcentration potential is low (BCF < 100 or Log Pow < 3). Partition coefficient: n-octanol/water(log Pow): 0.10 Measured #### **Propane** Bioaccumulation: Bioconcentration potential is low (BCF < 100 or Log Pow < 3). Partition coefficient: n-octanol/water(log Pow): 2.36 Measured #### Mobility in soil #### Diphenylmethane Dilsocyanate, isomers and homologues In the aquatic and terrestrial environment, movement is expected to be limited by its reaction with water forming predominantly insoluble polyureas. ### 4,4' -Methylenediphenyl diisocyanate In the aquatic and terrestrial environment, movement is expected to be limited by its reaction with water forming predominantly insoluble polyureas. #### Polymethylenepolyphenylisocyanate, propoxylated glycerin polymer No relevant data found. ### Polymethylenepolyphenyl polyisocyanate, polypropyleneglycol copolymer In the aquatic and terrestrial environment, movement is expected to be limited by its reaction with water forming predominantly insoluble polyureas. #### Isobutane Potential for mobility in soil is very high (Koc between 0 and 50). Partition coefficient (Koc): 35 Estimated. # Paraffin waxes and Hydrocarbon waxes, chlorinated Expected to be relatively immobile in soil (Koc > 5000). Given its very low Henry's constant, volatilization from natural bodies of water or moist soil is not expected to be an important fate process. Partition coefficient (Koc): > 5000 Estimated. ### Tris(1-chloro-2-propyl) phosphate Potential for mobility in soil is slight (Koc between 2000 and 5000). Partition coefficient (Koc): 1300 Estimated. ### Methyl ether Potential for mobility in soil is very high (Koc between 0 and 50). Partition coefficient (Koc): 1.29 - 14 Estimated. #### Propane Potential for mobility in soil is very high (Koc between 0 and 50). Partition coefficient (Koc): 24 - 460 Estimated. ### 13. DISPOSAL CONSIDERATIONS Disposal methods: DO NOT DUMP INTO ANY SEWERS, ON THE GROUND, OR INTO ANY BODY OF WATER. All disposal practices must be in compliance with all Federal, State/Provincial and local laws and regulations. Regulations may vary in different locations. Waste characterizations and compliance with applicable laws are the responsibility solely of the waste generator. AS YOUR SUPPLIER, WE HAVE NO CONTROL OVER THE MANAGEMENT PRACTICES OR MANUFACTURING PROCESSES OF PARTIES HANDLING OR USING THIS MATERIAL. THE INFORMATION PRESENTED HERE PERTAINS ONLY TO THE PRODUCT AS SHIPPED IN ITS INTENDED CONDITION AS DESCRIBED IN MSDS SECTION: Composition Information. FOR UNUSED & UNCONTAMINATED PRODUCT, the preferred options include sending to a licensed, permitted: Incinerator or other thermal destruction device. ### 14. TRANSPORT INFORMATION #### DOT Aerosols Proper shipping name UN number UN 1950 Class 2.1 Packing group Reportable Quantity MDI ### Classification for SEA transport (IMO-IMDG): Proper shipping name **UN** number **AEROSOLS** UN 1950 Class 2.1 Packing group Marine pollutant Transport in bulk Paraffin waxes and Hydrocarbon waxes, chlorinated Consult IMO regulations before transporting ocean bulk according to Annex I or II of MARPOL 73/78 and the **IBC or IGC Code** ### Classification for AIR transport (IATA/ICAO): Proper shipping name Aerosols, flammable **UN** number UN 1950 Class 2.1 Sealant 12oz HC ES SASTW 12ct ### Packing group This information is not intended to convey all specific regulatory or operational requirements/information relating to this product. Transportation classifications may vary by container volume and may be influenced by regional or country variations in regulations. Additional transportation system information can be obtained through an authorized sales or customer service representative. It is the responsibility of the transporting organization to follow all applicable laws,
regulations and rules relating to the transportation of the material. ### 15. REGULATORY INFORMATION ### Superfund Amendments and Reauthorization Act of 1986 Title III (Emergency Planning and Community Right-to-Know Act of 1986) Sections 311 and 312 Flammable (gases, aerosols, liquids, or solids) Gases under pressure Acute toxicity (any route of exposure) Skin corrosion or irritation Serious eye damage or eye irritation Respiratory or skin sensitisation Reproductive toxicity Specific target organ toxicity (single or repeated exposure) ### Superfund Amendments and Reauthorization Act of 1986 Title III (Emergency Planning and Community Right-to-Know Act of 1986) Section 313 This product contains the following substances which are subject to the reporting requirements of Section 313 of Title III of the Superfund Amendments and Reauthorization Act of 1986 and which are listed in 40 CFR 372. Components **CASRN** Diphenylmethane Diisocyanate, isomers and homologues 9016-87-9 4,4' -Methylenediphenyl diisocyanate 101-68-8 ### Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) Section 103 Calculated RQ exceeds reasonably attainable upper limit. Components RQ (RCRA Code) CASRN 4,4' -Methylenediphenyl diisocyanate 101-68-8 5000 lbs RQ #### Pennsylvania Worker and Community Right-To-Know Act: The following chemicals are listed because of the additional requirements of Pennsylvania law: | Components | CASRN | |--------------|----------| | Isobutane | 75-28-5 | | Methyl ether | 115-10-6 | | Propane | 74-98-6 | California Prop. 65 This product does not contain any chemicals known to State of California to cause cancer, birth defects, or any other reproductive harm. **United States TSCA Inventory (TSCA)** All components of this product are in compliance with the inventory listing requirements of the U.S. Toxic Substances Control Act (TSCA) Chemical Substance Inventory. ### 16. OTHER INFORMATION #### **Hazard Rating System** #### **HMIS** | | Health | Flammability | Physical
Hazard | |--|--------|--------------|--------------------| | | 4* | 4 | 3 | ^{* =} Chronic Effects (See Hazards Identification) #### Revision Identification Number: 99108824 / A776 / Issue Date: 04/17/2023 / Version: 11.0 Most recent revision(s) are noted by the bold, double bars in left-hand margin throughout this document. Legend | ACGIH | USA. ACGIH Threshold Limit Values (TLV) | | |------------|--|--| | AEL * | 8 & 12 hr. TWA | | | С | Ceiling limit | | | CAL PEL | California permissible exposure limits for chemical contaminants (Title 8, Article | | | | 107) | | | DUPONT AEL | DuPont AEL (Acceptable Exposure Limit) | | | NIOSH REL | USA. NIOSH Recommended Exposure Limits | | | OSHA P0 | USA. Table Z-1-A Limits for Air Contaminants (1989 vacated values) | | | OSHA Z-1 | USA. Occupational Exposure Limits (OSHA) - Table Z-1 Limits for Air | | | | Contaminants | | | PEL | Permissible exposure limit | | | STEL | Short-term exposure limit | | | TWA | 8-hr TWA | | | US WEEL | USA. Workplace Environmental Exposure Levels (WEEL) | | #### Full text of other abbreviations AllC - Australian Inventory of Industrial Chemicals; ASTM - American Society for the Testing of Materials; bw - Body weight; CERCLA - Comprehensive Environmental Response, Compensation, and Liability Act; CMR - Carcinogen, Mutagen or Reproductive Toxicant; DIN - Standard of the German Institute for Standardisation; DOT - Department of Transportation; DSL - Domestic Substances List (Canada); ECx - Concentration associated with x% response; EHS - Extremely Hazardous Substance; ELx - Loading rate associated with x% response; EmS - Emergency Schedule; ENCS - Existing and New Chemical Substances (Japan); ErCx - Concentration associated with x% growth rate response; ERG - Emergency Response Guide; GHS - Globally Harmonized System; GLP - Good Laboratory Practice; HMIS - Hazardous Materials Identification System; IARC - International Agency for Research on Cancer; IATA - International Air Transport Association; IBC - International Code for the Construction and Equipment of Ships carrying Dangerous Chemicals in Bulk; IC50 - Half maximal inhibitory concentration; ICAO - International Civil Aviation Organization; IECSC - Inventory of Existing Chemical Substances in China; IMDG - International Maritime Dangerous Goods; IMO -International Maritime Organization; ISHL - Industrial Safety and Health Law (Japan); ISO -International Organisation for Standardization; KECI - Korea Existing Chemicals Inventory; LC50 -Lethal Concentration to 50 % of a test population; LD50 - Lethal Dose to 50% of a test population (Median Lethal Dose): MARPOL - International Convention for the Prevention of Pollution from Ships: MSHA - Mine Safety and Health Administration; n.o.s. - Not Otherwise Specified; NFPA - National Fire Protection Association; NO(A)EC - No Observed (Adverse) Effect Concentration; NO(A)EL - No Observed (Adverse) Effect Level; NOELR - No Observable Effect Loading Rate; NTP - National Toxicology Program; NZIoC - New Zealand Inventory of Chemicals; OECD - Organization for Economic Co-operation and Development; OPPTS - Office of Chemical Safety and Pollution Prevention; PBT - Persistent, Bioaccumulative and Toxic substance; PICCS - Philippines Inventory of Chemicals and Chemical Substances; (Q)SAR - (Quantitative) Structure Activity Relationship; RCRA -Resource Conservation and Recovery Act; REACH - Regulation (EC) No 1907/2006 of the European Parliament and of the Council concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals; RQ - Reportable Quantity; SADT - Self-Accelerating Decomposition Temperature; SARA -Superfund Amendments and Reauthorization Act; SDS - Safety Data Sheet; TCSI - Taiwan Chemical Substance Inventory; TECI - Thailand Existing Chemicals Inventory; TSCA - Toxic Substances Control Act (United States); UN - United Nations; UNRTDG - United Nations Recommendations on the Transport of Dangerous Goods; vPvB - Very Persistent and Very Bioaccumulative #### Information Source and References This SDS is prepared by Product Regulatory Services and Hazard Communications Groups from information supplied by internal references within our company. DDP SPECIALTY ELECTRONIC MATERIALS US 9, LLC urges each customer or recipient of this (M)SDS to study it carefully and consult appropriate expertise, as necessary or appropriate, to become aware of and understand the data contained in this (M)SDS and any hazards associated with the product. The information herein is provided in good faith and believed to be accurate as of the effective date shown above. However, no warranty, express or implied, is given. Regulatory requirements are subject to change and may differ between various locations. It is the buyer's/user's responsibility to ensure that his activities comply with all federal, state, provincial or local laws. The information presented here pertains only to the product as shipped. Since conditions for use of the product are not under the control of the manufacturer, it is the buyer's/user's duty to determine the conditions necessary for the safe use of this product. Due to the proliferation of sources for information such as manufacturer-specific (M)SDSs, we are not and cannot be responsible for (M)SDSs obtained from any source other than ourselves. If you have obtained an (M)SDS from another source or if you are not sure that the (M)SDS you have is current, please contact us for the most current version. US